iTelescope.Net is the world’s premier network of Internet connected telescopes, allowing members to take astronomical images of the night sky for the purposes of education, scientific research and astrophotography. (more)

iTelescope.Net is a self-funding, not for profit membership organisation; we exist to benefit our members and the astronomy community. Financial proceeds fund the expansion and growth of the network. iTelescope.Net is run by astronomers for astronomers.

The network is open to the public; anyone can join and become a member including students, amateurs and even professional astronomers.

With 20 telescopes, and observatories located in New Mexico, Australia and Spain, observers are able to follow the night sky around the globe 24x7.

iTelescope.Net puts professional telescopes within the reach of all, with systems ranging from single shot colour telescopes to 700mm (27”) research grade telescopes.

Astronomy Research

Having access to professional telescopes means that doing real science has never been easier – great value for schools, educators, universities, amateur and professional astronomers. (more)

Exo-planets, comets, supernova, quasars, asteroids, binary stars, minor planets, near earth objects and variable stars can all be studied. iTelescope.Net can also send your data directly to AAVSO VPhot server for real-time online photometric analysis.

iTelescope.Net allows you to respond quickly to real-time astronomical phenomena such as supernova and outbursts events, gaining a competitive edge for discoveries. With more than 240 asteroid discoveries iTelescope.Net is ranked within the top 50 observatories in the world by the Minor Planet Center.

Get involved: members have used the network to provide supportive data for go/no-go decisions on Hubble space telescope missions.

Education and Astronomy Schools

With science and numeracy at the forefront of the education revolution, iTelescope.Net provides the tools, along with research and education grants, to support the development of astronomy or science based curriculums in schools. Contact iTelescope.Net about a grant for your school or research project. (more)

Professional observatories use iTelescope.Net to supplement current research projects. The network provides alternate observatory sites in both southern and northern hemispheres and is a good way to continue research when seasonal poor weather hits your observatory.

Sky Tours Live Streams

We offer a variety of ways to view the night sky, including our entry level Sky Tours Live Streams. These weekly streams, hosted by Dr. Christian Sasse, are a great way to get started with Remote Astronomy, allowing you to see our telescopes in action and learn about the Night Sky from a professional Astronomer.


Take stunning images of the night sky, galaxies, comets and nebula. Have access to the best equipment from the comfort of your computer and without the huge financial and time commitments. (more)

The network has everything from beginner telescopes with single shot colour CCDs to large format CCDs with Ha, SII and OII and LRGB filter sets. Check out the member image gallery – the results speak for themselves.

Depending on your own image processing skills, you can even land yourself a NASA APOD.


All you need is a web browser and an Internet connection; iTelescope.Net takes care of the rest. Our web-based launchpad application provides the real-time status of each telescope on the network as well as a host of other information such as a day-night map, observatory all-sky cameras and weather details. (more)

From the launchpad you can login to any available telescope, and once connected, you’re in command. Watch in real time as the telescope slews, focuses and images your target.

The image files (in FITS format) are then transmitted to a high-speed server ready for your download. All image data taken is your data – iTelescope.Net doesn’t hold any intellectual property rights.

Reserve and schedule observing plans in advance, even have them run while you are away from iTelescope.Net and have the image data waiting for you ready for download.

New and Starting Out?

A number of telescopes are fitted with colour cameras; these systems have been designed for ease of use. It’s as simple as selecting an astronomical target from the menu, watching the telescope image your target, and have the resulting image sent to your email address as a jpeg attachment. (more)

The image file is also sent to our high-speed server and can be downloaded in its raw image format, for post image processing if you want more of a challenge.

Already a Pro?

iTelescope.Net offers a large range of telescopes, fields of view and image scales, and NABG and ABG CCD camera combinations. Select from a large range of filters including narrowband, LRGB and UBVRI, as well as control pointing, filter selection, focusing, exposure times, image counts, repeat loops etc. All data is offered in its raw FITS format calibrated and non-calibrated.

Support and Service

With remote astronomy observing plans can be interrupted from time to time, by clouds, wind gusts and even a rare equipment failure.

iTelescope.Net has you fully covered with our satisfaction guarantee; we will return your points if you are unsatisfied with your results. Help is just a click away. (more)

A dedicated team of professionals are working around the clock to keep the network operating. This includes local ground crews at each observatory, sophisticated monitoring systems and remote observatory administrators monitoring the quality of data coming off the network.

Our dedicated support website allows members to seek answers to frequently asked questions. Formal support can be requested by lodging a support ticket, which can be viewed, tracked and managed through to completion. Go to or simply email

Our contact details are also available. You can phone or Skype us if you want to speak to a person directly; you can also contact us via Skype instant message, email and fax.

How much does this cost?

Rates vary based on your membership plan and the phase of the moon. Rates start as low as 17 to 100+ points per imaging hour, which is billed per minute of imaging time used; typically one point equals $1. Make sure you are subscribed to our newsletter for special offers. Please visit our pricing page for more information on telescope operating rates. (more)

Each telescope has its imaging hourly rate displayed in real time in the launchpad before you login. At the end of each session you are also sent a detailed usage receipt which includes the costs, weather data, preview jpeg images and your observing session log file.

Membership Plans

We have a range of plans catering for everyone from the amateur to the professional astronomer. Each plan provides unrestricted access to each telescope and includes the plan’s dollar value in points, which is credited to your account each time the membership renews. (more)

Membership plans set the usage rates for each telescope on the network, expressed in points per operating hour. The entry level plans provide maximum flexibility on our single shot colour systems, and the heavy usage plans focus more on the large research grade systems. Memberships start from $19.95 and range to $999.95 per 28 day period.

Additional points can be purchased at any time to supplement your account balance.

Hosting and Affiliates

iTelescope.Net offers a range of telescope hosting solutions to members with special projects, allowing you to host your own telescope at three of our four observatory locations. Conditions and approvals apply. Contact us for more information.(more)

Affiliate membership allows you to connect your own telescope to iTelescope.Net with reasonable rates of return. Limited availability exists and is subject to telescope network balance.

Please contact us for more information.

ITelescope Net

Create your badge

Visit our Google+ Page!

« Narrow Band Imaging - What is it all About? | Main | Getting Started in Astronomy Science »

Discovering Asteroids at Part 9-Distant Objects

Discovering Asteroids - Part Nine in a Series 

Go to Part  1 - 2 - 3 - 4 - 5 - 6 - 7 - 8


Beyond Jupiter

By Norman Falla (UK)

The main asteroid belt lies between Mars and Jupiter and any discoveries made using iTelescope equipment are likely to be located in this region. As we travel beyond Jupiter we find asteroids that can be divided into two main classes i.e. Centaurs.

and Trans Neptunian Objects (TNOs).

There is no general agreement on the definition of a Centaur and the situation is further complicated by the fact that the classification of newly-discovered objects can change when further observations improve the accuracy of their orbit.

It is for this reason that I have avoided differentiating between Centaurs and TNOs and have adopted the all-encompassing term used by the Minor Planet Center i.e. Distant Objects.

Really Slow

The greater the distance an asteroid is from the Sun the longer it takes to complete an orbit and the slower it appears to move when observed from the Earth. This table shows how the apparent speed varies with distance from the Sun.



2012 Opposition Point

Distance from Sun


Apparent Speed

















2008 LC18















When these values are plotted out you can see how apparent speed varies with distance from the Sun. The practical consequence of this is that if we want to find objects further than (for example) 20 A.U. from the Sun we need to be able measure an apparent motion in the 0.1 to 0.02 arcseconds/minute range.

Can we Detect Slow Movers?

In order to see if this was possible, I imaged the Distant Object 55637 using T11 during the night of October 13th – 14th 2012. At this time it was moving at 0.05 arcseconds per minute. The method used was as described in Part 7 except that instead of taking 15 images one after the other I collected three sets of five starting at 23 00 hrs on the 13th followed by 01 10 and 04 10 hrs on the 14th.  These times were a compromise between obtaining the longest possible observation arc while maintaining an altitude greater than 40°. When stacked for zero motion as 3 sets of 5 the observation arc was about 5 hours.

It should be noted that these observations pre-dated the 2015 Fair and Acceptable Usage Policy. If I wanted to carry out a similar observation now, I would need to discuss the matter with

As you can see, the 0.05 arcseconds per minute motion is readily detectable and I estimate that with some additional image magnification the slowest detectable speed would be about 0.01 to 0.02 arcseconds per minute.

All the above shows that speed is not a problem when detecting Distant Objects.

Can we discover Distant Objects?

Currently my detection limit for discovering new objects, using T11 or T31, is about magnitude 21.5.  The following table gives details of Distant Objects which the MPC has given 2015 designations. 


2015 Designation

First 2015 Observation

Potential Discovery


Apparent Magnitude





Distance from Sun







G96 Mt. Lemmon


















691 Steward Observatory






W84 Cerro Tololo-DECam






























G96 Mt. Lemmon






G45 Space Surveillance


I have marked in red those magnitudes which are below my current limit of detection using T11 or T31 (21.5). With regard to the speed of the asteroids, they were all moving faster than my estimated minimum detection speed of 0.01 arcseconds/minute. In fact those moving faster than about 0.2 arcseconds/minute would be potentially detectable using the method described in Part 7 of these articles.

This table shows all the Distant Objects with 2015 designations listed by the MPC up to mid-July 2015. As you can see, 8 of the 11 were potentially detectable using equipment. As has been discussed in previous articles not all your designations will turn out to be your discoveries. It should also be remembered that Distant Objects are very few and far between. During the same time period that the MPC listed these 11 objects they also recorded over 52,000 other asteroids.

In view of these results I intend to limit future Distant Object work to following up known objects and checking for others in the same field of view.

It not escaped my notice however that all of the 11 objects listed above were discovered by professional surveys using telescopes with apertures ranging from 0.9 to 3.5 metres. In contrast users have the potential to obtain near-comparable results using their 0.5 metre scopes.  There are not many situations in science where amateurs can produce similar results to professionals and my thanks are due to the organisation for enabling me to do just that.

What Next?

In my next article I will summarise the various stages of the discovery process from the initial designation, to numbering and how the MPC decides who is credited as the discoverer.

 See Norman's other articles on Asteroid Science