iTelescope.Net is the world’s premier network of Internet connected telescopes, allowing members to take astronomical images of the night sky for the purposes of education, scientific research and astrophotography. (more)

iTelescope.Net is a self-funding, not for profit membership organisation; we exist to benefit our members and the astronomy community. Financial proceeds fund the expansion and growth of the network. iTelescope.Net is run by astronomers for astronomers.

The network is open to the public; anyone can join and become a member including students, amateurs and even professional astronomers.

With 20 telescopes, and observatories located in New Mexico, Australia and Spain, observers are able to follow the night sky around the globe 24x7.

iTelescope.Net puts professional telescopes within the reach of all, with systems ranging from single shot colour telescopes to 700mm (27”) research grade telescopes.

Astronomy Research

Having access to professional telescopes means that doing real science has never been easier – great value for schools, educators, universities, amateur and professional astronomers. (more)

Exo-planets, comets, supernova, quasars, asteroids, binary stars, minor planets, near earth objects and variable stars can all be studied. iTelescope.Net can also send your data directly to AAVSO VPhot server for real-time online photometric analysis.

iTelescope.Net allows you to respond quickly to real-time astronomical phenomena such as supernova and outbursts events, gaining a competitive edge for discoveries. With more than 240 asteroid discoveries iTelescope.Net is ranked within the top 50 observatories in the world by the Minor Planet Center.

Get involved: members have used the network to provide supportive data for go/no-go decisions on Hubble space telescope missions.

Education and Astronomy Schools

With science and numeracy at the forefront of the education revolution, iTelescope.Net provides the tools, along with research and education grants, to support the development of astronomy or science based curriculums in schools. Contact iTelescope.Net about a grant for your school or research project. (more)

Professional observatories use iTelescope.Net to supplement current research projects. The network provides alternate observatory sites in both southern and northern hemispheres and is a good way to continue research when seasonal poor weather hits your observatory.

Sky Tours Live Streams

We offer a variety of ways to view the night sky, including our entry level Sky Tours Live Streams. These weekly streams, hosted by Dr. Christian Sasse, are a great way to get started with Remote Astronomy, allowing you to see our telescopes in action and learn about the Night Sky from a professional Astronomer.


Take stunning images of the night sky, galaxies, comets and nebula. Have access to the best equipment from the comfort of your computer and without the huge financial and time commitments. (more)

The network has everything from beginner telescopes with single shot colour CCDs to large format CCDs with Ha, SII and OII and LRGB filter sets. Check out the member image gallery – the results speak for themselves.

Depending on your own image processing skills, you can even land yourself a NASA APOD.


All you need is a web browser and an Internet connection; iTelescope.Net takes care of the rest. Our web-based launchpad application provides the real-time status of each telescope on the network as well as a host of other information such as a day-night map, observatory all-sky cameras and weather details. (more)

From the launchpad you can login to any available telescope, and once connected, you’re in command. Watch in real time as the telescope slews, focuses and images your target.

The image files (in FITS format) are then transmitted to a high-speed server ready for your download. All image data taken is your data – iTelescope.Net doesn’t hold any intellectual property rights.

Reserve and schedule observing plans in advance, even have them run while you are away from iTelescope.Net and have the image data waiting for you ready for download.

New and Starting Out?

A number of telescopes are fitted with colour cameras; these systems have been designed for ease of use. It’s as simple as selecting an astronomical target from the menu, watching the telescope image your target, and have the resulting image sent to your email address as a jpeg attachment. (more)

The image file is also sent to our high-speed server and can be downloaded in its raw image format, for post image processing if you want more of a challenge.

Already a Pro?

iTelescope.Net offers a large range of telescopes, fields of view and image scales, and NABG and ABG CCD camera combinations. Select from a large range of filters including narrowband, LRGB and UBVRI, as well as control pointing, filter selection, focusing, exposure times, image counts, repeat loops etc. All data is offered in its raw FITS format calibrated and non-calibrated.

Support and Service

With remote astronomy observing plans can be interrupted from time to time, by clouds, wind gusts and even a rare equipment failure.

iTelescope.Net has you fully covered with our satisfaction guarantee; we will return your points if you are unsatisfied with your results. Help is just a click away. (more)

A dedicated team of professionals are working around the clock to keep the network operating. This includes local ground crews at each observatory, sophisticated monitoring systems and remote observatory administrators monitoring the quality of data coming off the network.

Our dedicated support website allows members to seek answers to frequently asked questions. Formal support can be requested by lodging a support ticket, which can be viewed, tracked and managed through to completion. Go to or simply email

Our contact details are also available. You can phone or Skype us if you want to speak to a person directly; you can also contact us via Skype instant message, email and fax.

How much does this cost?

Rates vary based on your membership plan and the phase of the moon. Rates start as low as 17 to 100+ points per imaging hour, which is billed per minute of imaging time used; typically one point equals $1. Make sure you are subscribed to our newsletter for special offers. Please visit our pricing page for more information on telescope operating rates. (more)

Each telescope has its imaging hourly rate displayed in real time in the launchpad before you login. At the end of each session you are also sent a detailed usage receipt which includes the costs, weather data, preview jpeg images and your observing session log file.

Membership Plans

We have a range of plans catering for everyone from the amateur to the professional astronomer. Each plan provides unrestricted access to each telescope and includes the plan’s dollar value in points, which is credited to your account each time the membership renews. (more)

Membership plans set the usage rates for each telescope on the network, expressed in points per operating hour. The entry level plans provide maximum flexibility on our single shot colour systems, and the heavy usage plans focus more on the large research grade systems. Memberships start from $19.95 and range to $999.95 per 28 day period.

Additional points can be purchased at any time to supplement your account balance.

Hosting and Affiliates

iTelescope.Net offers a range of telescope hosting solutions to members with special projects, allowing you to host your own telescope at three of our four observatory locations. Conditions and approvals apply. Contact us for more information.(more)

Affiliate membership allows you to connect your own telescope to iTelescope.Net with reasonable rates of return. Limited availability exists and is subject to telescope network balance.

Please contact us for more information.

ITelescope Net

Create your badge

Visit our Google+ Page!


Research @ iTelescope.Net

Nth America (MPC  H06) : Australia (MPC Q62) : Spain (MPC I89) brings together many research grade telescopes from around the world in three time zones and two hemispheres providing unprecedented research opportunities to the amateur and professional astronomer.


iTelescope users are researching:

  • Variable & CV Stars
  • Asteroids and Comets
  • Double Stars
  • Supernova
  • Exoplanets
  • Deep Space Imaging


At you can choose to work alone on your own projects or become a member of the Remote Astronomical Society Observatory (RASO) and work with a team of researchers.

Joining the AAVSO (American Association of Variable Star Observers) also has many benefits for GRAS researchers with the added power of VPhot's online photometry available to members.

Many iTN users have their own telescopes and even permanent observatories. So, why do they perform their research using

First, they have access to equipment beyond their individual means.

Second, they can collect data very efficiently, saving the "fun stuff" for their backyard observatories.

Many iTelescope.Net observers are armed only with binoculars and small portable "grab-and-go" telescopes. Some are confined to large cities without dark skies, some are handicapped. The power of the Internet allows these observers opportunities to explore the heavens and become research scientists.

And, it’s not all work. Take the astroimages of your dreams in between solving the mysteries of the universe.


iTelescope.Net - Gateway to the Asteroids

During the past two years Norman Falla, based in suburban London, England has been using iTelescope.Net in his search for new asteroids. To date his score amounts to two numbered-and-named plus another five awaiting further observations.

These asteroids were discovered using 10 inch scopes base in New Mexico and a 16 inch instrument in Australia. Recently however Norman has migrated to iT-11, a Planewave 20 inch CDK telescope. A 0.51m  f6/8 corrected Dall-Kirkham Astrograph in New Mexico. Part of iTelescope network of remote imaging systems based in the Northern Hemisphere.

His first test of the system was to improve the orbit of one of his asteroid discoveries (2009 FC5). The weather conditions were not ideal with a combination of low temperatures and moderate wind gusts so he was pleasantly surprised to find that the instrument delivered pin-sharp images for 300-second unguided exposures.

Norman detected his asteroid, measured the position and reported the results to the Minor Planet Center. They reported back the good news that the accuracy of his measurements was acceptable and the even better news that the current magnitude of the asteroid was 22.1

The brightness of asteroids is measured in units of magnitude where the larger the number, the fainter the asteroid and the more difficult it is to detect. The significance of being able to break through the magnitude 22 barrier can best be judged by considering the current routine magnitude limits of the professional asteroid surveys who constantly monitor the sky for asteroids and comets that are on a collision course with Earth.

Currently the only survey that routinely detects asteroids significantly fainter than magnitude 22 is Pan STARRS in Hawaii. The first of four 1.8 m telescopes to be installed there is operational and can detect down to about magnitude 22.5. Although survey telescopes are generally much larger than the iT-11, 20" instrument and therefore potentially much more capable of detecting faint asteroids, they need to cover large areas of sky each night. They can only do this by reducing the exposure time per image and this reduces their magnitude limit. 

Recent changes in the Minor Planet Center rules mean that it will be more difficult for amateur astronomers to discover asteroids. There are two advantages for amateurs in being able to break the magnitude 22 barrier.

Firstly asteroids fainter than magnitude 22 are less likely to have been observed previously and secondly faint asteroids are generally smaller and consequently more numerous than their larger, brighter counterparts.

Norman plans to carry out further observations using the 20 inch iT-11 scope and has set himself the target of breaking through the magnitude 22.5 barrier. 

Andrew Lowe discovered information of interest to our iTelescope.Net community.

H06, the iTelescope observatory in Mayhill, New Mexico moved up to the top 50 of all observatories in asteroid discoveries and in the top 10 in asteroid research activity world wide! This is quite an accomplishment and much of it is due to Andrew's own efforts as our most prolific asteroid hunter.

Student Science in Action!

One of the fundamental issues in education today is capturing the passion of young people into science and math, the innovation engine of a nation's future, its intellectual capital and ability to innovate. Social media has been at the forefront of engaging people in science through Citizen Science programs likeCosmoQuestZooniverse and also here at where amateur astronomers do hundreds of hours of science each month.

Our first grant of the year went to the College Saint Exupery in Perpignan, France. A humble 400 points to enable them to do several exoplanet transits for a local science competition. Immediately I was impressed with the quality of their grant application; they had a keen appetite for discovery of new things and were fascinated with concept of transit timing variations (TTVs), and the prospect that they might be able to detect something really exciting.

The 14-year-old students in "Troisième" (which is equivelent to middle school in Australia or junior high in the U.S.) made all the decisions, submitted their grant proposal to their science teacher first, then to their English teacher to make sure it was well written in the "Queen's English" for us convict-descended Australians. They set out their goal to collect two transits and report the data to the TRESCA database run by the Czech Astronomical Society.

As most of you know -- not everything goes to plan in astronomy!

After several test runs to determine exposure length, and learning about converting universal time zones to local time zones and identifying a suitable target, they discovered some "learnings". What a refreshing attitude to see kids try something, get it wrong, chalk it up as a good lesson in what not to do, work out what they did wrong and quickly adjust. On most occasions when they asked a question, by the time I got back to them they had already worked out the answer themselves, such was their energy and commitment to the task.

They had several setbacks, they ran into the bane of every Astronomer's worst nightmare -- WEATHER!

The first couple of sessions they booked were "weathered out", then just when they thought they had nailed their first transit, the weather showed up again -- you guessed it -- right at the ingress of the transit, producing this rather interesting light curve, where they lost the middle of the transit. They pressed on undetered!

Image credit: Transit of WASP-43b From Q62 - College Saint Exupery

They gave up on the monsoonal flush of weather drowning the Australian east coast and jumped onto iT11 in New Mexico and got a beautiful transit of Qatar-2b but AGAIN missed part of the pre-transit data due to weather, but this time good enough to "tick the box" and submit some meaningful data. 

Image credit: Transit of WASP-43b From Q62 - College Saint Exupery

Now, do you think that would be enough for teenagers with new toys? Of course not! They were keen to make a discovery and nothing was going to stop them. So armed with over 200 quality images covering over five hours of data they began exploring what else their photometry tools could do. Bingo! They identified a new variable star that was previously unknown.

As good little scientists, they know you don't announce discoveries in internet blogs -- you write a discovery paper and have it peer reviewed by a local french astronomer!

These kids are just awesome and opitimize the very future of science.

The students contacted Raoul Behrend at the Genève Observatory to peer review their work. They had also located a second variable star in their images, and both have been confirmed by Mr. Behrend and have been published in the USNO A2.0 Catalog with the common names of Perp-1 and Perp-2. The students have just returned from their winter break and are now working on a submission to the VSX catalog of the AAVSO.

Image Credit: Raoul Behrend

I asked Julien Vandermarlière, the Troisième science teacher, what the students had learned so far and what they hoped to achieve in the future:

"We entered the competition because we wanted to discover the universe of astronomie. We think exoplanets and variable stars are very mysterious things and we would like to learn more about it!"

"Controling your telescopes via internet was really interesting and we really appreciate it. Learning to do it was the most exciting part of the project! Astronomie is very interesting part of sciences and may be we will try to learn more about it after our contest. May be we will make another project but we don't know which one yet. May be in the future some of us will be professional astronomers!"

Troisième Science Students of College Saint Exupery, Perpignan

We asked our good friend Mike Simonsen from the AAVSO (American Association of Variable Star Observers)how important it was to encourage young people to connect with science and how important it is for the AAVSO and the field of Astronomy:

"Astronomy is a great way to get kids involved in analytical and
critical thinking without them even knowing they are learning
something until it's too late! Astronomy is really the science of
everything. The entire universe is the laboratory, and we use
mathematics, physics, chemistry, biology and all the technology and
engineering skills we can muster to learn who we are, where we came
from and what our place is in the grand scheme of things. If you want
to give meaning to a young person's life, introduce them to astronomy
and help them find answers to the biggest questions we can ask."

"What is surprising to many people is how important variable stars are
in the landscape of astrophysics. When we study variable stars we are
really studying the secret lives of stars. How they are born, live out
their lives for millions or billions of years, and die, sometimes as
white dwarfs or in violent eruptions that seed the universe with the
raw materials to make the next generation of stars, and us."

"Much of what we know about stellar evolution, the distance to objects
in the universe and the search for life on planets around other stars
is based on our study of variable stars."

Mike Simonsen - Membership Director & Development Officer - AAVSO 

I have learned just as much from the College Saint Exupery Students and their energetic teacher (Julien), as they have from their project. It's been great to be part of their journey, which I am sure we will hear more about very soon.

The key learnings for the grant program have been:

  • carefully select applicants who have the energy and drive to achieve their goals;
  • it's okay to make mistakes -- just encourage people and keep moving;
  • never underestimate how powerful it is to place quality tools in the hands of people who love science;
  • gently guide and make suggestions but allow the applicants to drive the process;

So to the budding scientists at College Saint Exupery, you are an inspiration to all. Good luck with your discovery paper and your entry in the science competition. wishes to thank the parents of College Saint Exupery who graciously gave permission to publish the class photo. considers each grant application on its merits, and gives preference to Education, Science Research and Citizen Science collaborations such as OSIRIS-Rex.

UPDATE: 28/3/2013

Perp-1 has been accepted by the VSX team at the AAVSO - Congratuations!!!

Cataclysmic Variables Catch Your Fancy?

One of our most experienced iTelescope variable star observers, Bill 'Dingo' Dillon from the AAVSO, loves to catch Cataclysmic Variables (CVs) as they go into an outburst. Running a friendly race with David Levy to be first to catch them in action.

CVs are actually binary systems, with a white dwarf  primary and a donor secondary. The white dwarf accrues matter from the donor, rich in hydrogen, and this accreted matter forms an accretion disk around the primary. This is an unstable condition and when a sufficient amount of the accretion disc falls into the primary the density and temperature of the hydrogen rises high enough to ignite nuclear fusion, rapidly burning the donor star hydrogen to helium. This causes a spike in magnitude, an outburst.

There are many classes of CVs. Right now AAVSO has an active observing program for several CVs classed as Z Camelopardalis dwarf novae. “Z Cam” binaries have the peculiar characteristic of becoming “stuck” between an outburst maximum and a resting minimum, called a standstill. It’s a 10 – 40 day cycle.

The AAVSO 2010-2011 Z Cam campaign is now on. The campaign contains both known Z Cam pairs such as RX Andromeda and suspected Z Cam pairs such as TW Triangulum. So there are both opportunities to collect data that will help us understand known pairs and the opportunity to help discover the nature of suspected pairs.

To get in on the campaign, visit the AAVSO Cataclysmic Variable Section and look for the link to the Z Campaign link.

 Dr Ed Wiley 

Eclipsing binaries and comments on Imaging Exoplanets


If you are thinking about jumping in and trying you hand at exoplanets the first thing you need to try are eclipsing binaries. Just like exoplanets, EBs vary in magnitude because a fainter companion is orbiting the primary star in such a way that the transit is in line with Earth, causing magnitude to vary.

The primary difference is, you guessed it, the signal-to-noise (S/N) ratio needed to successfully obtain a light curve.  For EBs, S/N can be quite modest, in range of 0.01 magnitude error. This is because the magnitude variation of many EBs can be as much as 1 magnitude or more. And, you are facing only the usual S/N variation.

With exoplanets the variation in magnitude is quite small, on the order of less than a 0.03 magnitude drop or less. This puts a premium on S/N and the average successful exoplanet observer is look at S/N rations on the order of 0.002-0.005 magnitude (2 to 5 mmag). Further, many exoplanets are bright, which means that you have to worry more about phenomena like  scintillation noise in addition to the usual sources of noise (including noise caused by measuring aperture size).  However, just like EBs, exoplanet work has one saving grace; it demands precision, not accuracy.

In other words, it is not the actual magnitude of the primary that is of prime importance, it is generating an accurate timing of the minimum and the shape of the light curve that are of primary importance.

So, you say: “Ed, how do you image and measure exoplanets.” I answer: “I don’t!” It is just not something I have done.  But if you want to give it a try, I can suggest a book about exoplanet observing  that has been invaluable to me in understanding sources of error that have proven valuable for regular photometry.

“Exoplanet Observing for Amateurs” is Bruce L. Gary’s outstanding book for the amateur contemplating exoplanet research. Gary takes a very common sense approach to guiding us through the demands of this most demanding field of amateur photometry. Even if you, like me, are not particularly interested in exoplanets, you will benefit greatly from Gary’s discussions of calibration, setting differential photometric  apertures, sources of noise, calibration and a host of other topics.

Understanding the demands of this most rigorous program has helped me in my less demanding  pursuits of eclipsing binaries and other variables. Better yet, the book is available as a PDF for free and as a hard copy (which I recommend) for a very modest price and also visit Bruce’s web site.

So, you are still interested in exoplanets and are not put off by the rigor of the program. Begin with some easy eclipsing binaries using the AAVSO EB program as a guide. Start with some fairly easy ones that vary in their light curves and work up to the really “hard” ones that vary only slightly. Finding the target and times are easy, a day-by-day ephemeris is available for the program EBs through the AAVSO program and instructions for using the ephemeris are available at the RAS Wiki on the EB page along with several links I hope you  will find useful.  And, make sure to see if any of our GRAS observers are imaging exoplanets and ask them about their observing program.

Dr Ed Wiley

Getting started with Variable Stars, Some thoughts

If you are new to differential photometry, it is a fascinating field where amateur astronomers can make valuable contributions. We have many amateurs and professionals using iTelescope.Net to collect these data. But there are a few things you need to know before beginning.

First, you should go to the AAVSO web site and download their photometry hand book. You don’t have to be a member to get this valuable resource.  Another good resource is Brian Warner’s “A Practical Guide to Lightcurve Phototmetry and Analysis.”

Second, you need to use a telescope that has a photometric V-filter and you need to use this filter for all your observations, at least in the beginning. Do not use the regular photographic filters, they are useless for photometry.

Third, you need to have some idea as to what exposure times will yield acceptable signal-to-noise (S/N) ratios. The precision of your photometric results depends on your S/N ratio. For 0.05 precision you need an S/N ratio of 100 or higher. So, how do you find out? There is no substitute for some hands-on practice.  If M67 happens to be up, then there is no better practice than imaging M67 where there are a large number of standard stars. Search “M67 photometry.”  The “gold standards” are Landolt fields (search on “Landolt fields”). Landolt Fields are accessible for both northern and southern observers. Finally, there are “Henden Fields” (Arne Henden is now director of AAVSO), but they favor northern observers. Take a series of images of 60, 90, 120, and 180 seconds. Take four or five images for each integration time.  If you are an AAVSO member, make sure you have the V-filter and VPHOT enabled with your reservation. If not, you can use whatever photometry software you have once you calibrate your images.

The value of imaging standard fields is that you can use the standard stars as both targets and comparison star and try some ensemble photometry. You can compare known magnitude with the results you obtain from you various exposures. And, you can check our accuracy using different comparison stars. For example, if you use comparison stars that are similar in color to the star you are estimating, is accuracy better than if you use comparison stars that are of different colors? What about relatively low S/N ration to high S/N ratio? What happens when you stack the images from each exposure integration and then measure? Stacking can be the key to increasing S/N ratio while keeping integration times reasonable.

Imaging and measuring known stars (so well know that they are primary or secondary standards) builds confidence and skill. Your results should be fairly good if you work in the S/N ratio range of 100 or greater.

What to pick for your first variable? I suggest that you get into the AAVSO data for Mira-class variables.  Pick a few that are actively being imaged (recent data) and try your hand at these variables. Most Miras vary slowly and you can compare your results with the results of others to see if you are on the right track.

 Dr Ed Wiley